CDEV-11

Modeling mechanisms of microtubule dynamics and polarity in neurons

SMB2025 SMB2025 Follow
Share this

AnnaNelson

University of New Mexico
"Modeling mechanisms of microtubule dynamics and polarity in neurons"
The stability and polarity of the microtubule cytoskeleton is required for long-range, sustained transport within neuronal cellsl. In particular, the healthy microtubule cytoskeleton is comprised of tubulin protein and is stable with a particular orientation. However, when injured, these microtubules are dynamic, rearrange their orientation, and the appearance of microtubules is upregulated. It is unknown what mechanisms are involved in this balance between dynamic rearrangement and sustained function. Using a stochastic mathematical model that incorporates experimental data, we seek to understand how nucleation can impact microtubule dynamics in dendrites of fruit fly neurons. In the stochastic model, we assume two mechanisms limit microtubule growth: limited tubulin availability and the dependence of shrinking events on microtubule length. To better understand our stochastic model, we develop a partial differential equation (PDE) model that describes microtubule growth and nucleation dynamics, and we compare analytical results to results from the complex stochastic model. Insights from these models can then be used to understand what mechanisms are used organize into polarized structures in neurons, and how microtubule dynamics, like nucleation, may impact cargo localization post-injury.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.