CDEV-15

The bacterial dimeric transcription factor NsrR: a case study of a regulatory protein with a large number of states

SMB2025 SMB2025 Follow
Share this

MarcRoussel

University of Lethbridge
"The bacterial dimeric transcription factor NsrR: a case study of a regulatory protein with a large number of states"
In a number of bacteria, nitric oxide (NO) is converted to nitrate by an enzyme called Hmp. In emph{Streptomyces coelicolor}, synthesis of Hmp is in turn controlled by an iron-sulfur protein called NsrR. NsrR represses the transcription of two copies of the emph{hmp} gene in the emph{S. coelicolor} genome, but reaction of NsrR's iron-sulfur cluster with NO causes NsrR to dissociate from the emph{hmp} promoter, thus allowing Hmp to be expressed. While this is a straightforward control mechanism, NsrR is a dimer, and the iron-sulfur cluster in each monomer of NsrR can react with NO several times. Eventually, a repair system restores the NO-damaged iron-sulfur clusters of the dimers. But given that a single reaction with NO is sufficient to cause the NsrR dimer to dissociate from the emph{hmp} promoter, do we need to model the complex chemistry of the dimer, or is a highly simplified model that considers a single NsrR unit and its iron-sulfur cluster sufficient to capture the dynamics of this control system?
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.