CDEV-6

A tale of trafficking: On prolactin receptor localization in pancreatic β-cells

SMB2025 SMB2025 Follow
Share this

LynneCherchia

University of Southern California
"A tale of trafficking: On prolactin receptor localization in pancreatic β-cells"
The prolactin receptor (PRLR) is a single-pass transmembrane receptor driving pancreatic β-cell proliferation via JAK/STAT signaling activation. This signal transduction pathway enables insulin-secreting β-cells to adapt to metabolic stress; however, the precise mechanisms underlying the pathway’s proliferative effect remain ill-defined. Here we implement a pipeline that uses live-cell fluorescence imaging, reconstitution approaches, and fluorescence correlation spectroscopy (FCS) to inform a mathematical model of PRLR signaling in β-cells and build a quantitative, mechanistic understanding of the signaling network. PRLR signaling is dynamic, involving changes in the spatial organization of signaling molecules. We have observed PRLR undergoing rapid internalization, a behavior that has been shown and modeled in other signaling pathways but has not been considered in a mathematical model of PRLR signaling. Such a model is useful for predicting strategies to modulate β-cell function. PRLR internalization is observed in both our minimal engineered PRLR expression system and in native pancreatic tissue, while FCS and chemigenetic labeling with SNAP-tag confirm the presence of a low concentration plasma membrane pool of PRLR. Our imaging data are used to integrate PRLR trafficking dynamics into an ordinary differential equation (ODE) model of PRLR signaling. We employ the ODE model to test hypotheses targeting how the spatial heterogeneity of PRLR signaling dynamics affects downstream signaling outcomes. Our data underscore the versatility of building a generalizable modeling-imaging framework to quantitatively understand signal transduction in and beyond β-cells.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.