ECOP-17

Quantifying the fires of the future: Modelling and inference of wildfire spread dynamics.

SMB2025 SMB2025 Follow
Share this

Axa-MariaLaaperi

Newcastle University
"Quantifying the fires of the future: Modelling and inference of wildfire spread dynamics."
Wildfires disrupt ecosystems, with climate change exacerbating vulnerability in regions poorly adapted to such disturbances. These events are driven by complex, multi-scale interactions where small perturbations in environmental factors can trigger large-scale shifts, complicating prediction efforts. We propose a coupled convection-reaction-diffusion system as a framework for modelling wildfire spread dynamics. This system integrates spatial and temporal variability to identify thresholds for spread and quantify the impact of abrupt environmental changes on burnt areas and rates of propagation. Incorporating environmental, meteorological, and historical fire record data from the Global Wildfire Information System, the Department for Environment, Food and Rural Affairs (UK), and drone footage of heather burning. Bayesian inference and Monte Carlo methods are employed for parameter estimation and uncertainty quantification, ensuring robust model validation against unseen data. Recent wildfire events around the globe highlight the need for actionable insights into environmental vulnerability, property loss, and infrastructure risk. By enabling near-real-time simulations, this model aims to provide a computational tool for emergency response, long-term management strategies, and assessments of climate change-induced outlier weather patterns influencing fire behaviour. This work highlights the potential of mathematical modelling to advance understanding and management of critical ecological disturbances.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.