ECOP-22

Forecasting Mosquito Population in Maricopa County Using Climate Factors and Filtering Techniques

SMB2025 SMB2025 Follow
Share this

KayodeOshinubi

Northern Arizona University
"Forecasting Mosquito Population in Maricopa County Using Climate Factors and Filtering Techniques"
Mosquito-borne diseases pose a significant public health challenge, and effective prevention requires accurate forecasting of mosquito populations. In this study, we developed a statistical forecasting framework that leverages climate factors, such as temperature and precipitation, to improve mosquito population predictions in Maricopa County, Arizona. Our approach combines adaptive modeling techniques and filtering methods to infer precise model parameters and address previously observed limitations, particularly the inability to capture spring dynamics. By incorporating an Ensemble Kalman Filter (EnKF) method, we estimated time-varying parameters (baseline population growth rate) and static parameters while resolving the spring problem observed in prior models. Using Generalized Additive Models (GAMs), we forecasted the baseline population growth rate on a weekly basis, integrating precipitation and temperature data as covariates. These forecasts were further used to run a mechanistic ordinary differential equation (ODE) model to predict mosquito abundance and estimate associated uncertainties. Our iterative framework was applied weekly over a 52-week period, successfully capturing seasonal variations in mosquito populations from 2014 to 2015. The EnKF demonstrated superior performance compared to traditional Markov Chain Monte Carlo (MCMC) approaches for fitting mosquito abundance data. This enhanced methodology provides actionable insights for public health decision-makers, supporting resource allocation and improving outcomes in mosquito-borne disease prevention. Our findings underscore the value of integrating climate data and adaptive filtering techniques to address forecasting challenges, ultimately enabling more effective responses to emerging or reemerging pathogens of mosquito-borne disease risks, which can be driven by human behavior to become a pandemic.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.