ECOP-5

Effect of Climate Warming on Mosquito Population Dynamics in Newfoundland

SMB2025 SMB2025 Follow
Share this

JosephBaafi

Memorial University of Newfoundland
"Effect of Climate Warming on Mosquito Population Dynamics in Newfoundland"
Mosquitoes are key vectors of several infectious diseases affecting humans and animals. In North America, Culex mosquitoes are primary vectors of West Nile virus, St. Louis encephalitis, and Japanese encephalitis, as well as viral diseases in birds and horses. The Culex mosquito life cycle consists of four stages: eggs, larvae, pupae, and adults, each with unique development and mortality rates. Only active (non-diapausing) adults can reproduce, and environmental factors such as temperature, photoperiod, and rainfall influence population dynamics and stage-specific abundances. We develop a data-driven, stage-structured model that incorporates experimental data to describe how key climate variables regulate life history parameters. Specifically, egg laying rates depend on temperature, while maturation and survival rates are influenced by both temperature and rainfall. Mortality is temperature-dependent, and diapause induction and reactivation rates in adults are driven by temperature and photoperiod. Unlike many previous models that focus on tropical mosquitoes, our study explicitly includes diapause, a dormancy period in adult Culex mosquitoes essential for accurate modelling of temperate mosquito populations. Our results show that mosquito populations peak during summer months when temperatures exceed 10°C. Seasonal fluctuations in abundance highlight the need for adaptive vector control strategies. Since control measures often target specific life stages, such as larvicides for larvae or insecticides for adults, our findings suggest that optimal intervention strategies should vary by season to effectively reduce mosquito populations and disease risk.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.