MEPI-9

Semi-field versus experimental hut trials: Comparing methods for novel insecticide-treated net evaluation for malaria control

SMB2025 SMB2025 Follow
Share this

EmmaFairbanks

University of warwick
"Semi-field versus experimental hut trials: Comparing methods for novel insecticide-treated net evaluation for malaria control"
We aim to compare results for the predicted reduction in vectorial capacity caused by pyrethroid and pyrethroid-piperonyl butoxide insecticide treated nets (ITNs) between semi-field Ifakara Ambiant Chamber tests (I-ACT) and experimental hut experiments. Mathematical modelling and Bayesian inference frameworks estimated ITN effects on mosquito behavioural endpoints (repelled, killed before/after feeding) to predict reductions in Anopheles gambiae’s vectorial capacity for Plasmodium falciparum transmission. The reduction in biting estimates are generally greater for I-ACT, possibly due to lower mosquito aggression: Although I-ACT vectors are probing before release, experimental hut vectors are actively seeking a blood meal. I-ACT estimates higher probability of killing vectors which have fed, while experimental huts show greater killing before feeding, possibly due to their open-system design, where vectors can contact the net, then attempt to exit and get trapped. This is supported by most of the mosquitoes being caught before feeding being in the exit trap. While the I-ACT is a closed system, were vectors cannot exit or be trapped, increasing the likelihood of returning to host-seeking and feeding. Despite these differences, both methods yielded similar predictions for the overall reduction in vectorial capacity. Results suggest that I-ACT provides a good initial assessment of the impact of adulticide modes of action of these nets. Challenges of semi-field experiments include how to model the change in efficacy from practical use over time. However, important advantages include the ability to easily trial different strains of vector (including different resistance levels) and allowing rapid data collection. Parameterising models with location-specific bionomic parameters allows for setting -specific predictions of the impact of different nets, with the potential to include additional modes of action for other active ingredients.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.