ONCO-12

A structured-PDE approach to targeting a quiescent sub-population under hypoxia and anti-tumour therapies in paediatric glioma.

SMB2025 SMB2025 Follow
Share this

RubyNixson

Mathematical Institute, University of Oxford
"A structured-PDE approach to targeting a quiescent sub-population under hypoxia and anti-tumour therapies in paediatric glioma."
Paediatric diffuse midline gliomas are highly aggressive, incurable, childhood tumours. Their location in the brainstem limits treatment to radiotherapy, which allows an average survival time of 9-11 months. A sub-population of quiescent tumour cells are thought to be responsible for the poor outcomes of these patient. Quiescence is often viewed as a reversible resting state in which cells temporarily exit the cell cycle, the process controlling DNA replication and cell division. Radiosensitivity varies during the cell cycle, and quiescent cells exhibit a higher relative level of radio-resistance. Hypoxia (physiologically low levels of oxygen) also impacts cell cycle progression and quiescence, as well as response to radiotherapy, contributing to poor patient outcomes. We build on existing mathematical models of cell cycle progression under treatment which account for the radio-resistance of quiescent cells and their ability to re-enter the cell cycle and proliferate. We derive a system of partial differential equations (PDEs), which structures cells by the time spent in each cell cycle phase and allows transitions to and from a quiescent phase. By considering oxygen-dependent cell cycle progression, we use the model to investigate how the proportion of quiescent cells changes when we impose fluctuating oxygen dynamics and treat with radiotherapy. We extend existing studies that optimise treatment schedules using a balance of treatment outcome and toxicity/cost by incorporating a fixed radiotherapy schedule to investigate the impact of a hypothetical drug that alters the transition dynamics to and/or from quiescence. By considering different mechanisms of action for this hypothetical drug, we use our PDE model to identify candidate drugs with the potential to slow tumour progression and improve patient outcomes. This work will inform our clinical collaborators if such an improvement is possible, and what the design of a suitable drug should be.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.