ONCO-13

MRI-based mathematical modeling to predict the response of cervical cancer patients to chemoradiation

SMB2025 SMB2025 Follow
Share this

ReshmiPatel

The University of Texas at Austin
"MRI-based mathematical modeling to predict the response of cervical cancer patients to chemoradiation"
Concurrent chemoradiation followed by brachytherapy is the standard-of-care treatment for locally advanced cervical cancer (LACC), but 30% of treated patients experience local recurrence [1], indicating a need for patient-specific, optimized therapeutic regimens to improve outcomes. We aim to predict patient-specific response to chemoradiation by applying our established MRI-based mathematical modeling framework [2]. The study cohort consisted of 10 LACC patients who underwent imaging with T2-weighted MRI, dynamic contrast-enhanced MRI, and diffusion-weighted MRI (DWI) before (V1), after two weeks (V2), and after five weeks (V3) of chemoradiation [3]. We registered all patient-specific MRI data within and between visits, and maps of the number of tumor cells (NTC) were calculated from the DWI-derived apparent diffusion coefficients. Our biology-based reaction-diffusion models characterize the spatiotemporal change in NTC as a function of cell diffusion, proliferation, and therapy-induced death. We consider two model options for cell death: (A) distinct chemotherapy (exponential decay) and radiotherapy (instantaneous decrease according to the linear-quadratic model) terms and (B) a single exponential decay term describing chemoradiation. Proliferation and chemoradiation efficacy rates were calibrated to the V1 and V2 NTC maps, and the calibrated model was run forward to predict the NTC at V3. Using Model (A), the concordance correlation coefficient (CCC) between the observed and predicted V1 to V3 change in total tumor cellularity was 0.87, and the CCC between the observed and predicted change in tumor volume was 0.90; using Model (B), the CCC values were 0.97 and 0.90, respectively. These preliminary findings show the promise of our mathematical modeling framework in predicting LACC response to chemoradiation. References: [1]. CCCMAC. Cochrane Database Syst Rev. 2010. [2]. Jarrett et al. Nat Protoc. 2021. [3]. Bowen et al. J Magn Reson Imaging. 2018.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.