ONCO-16

Mechanistic modelling of cluster formation in metastatic melanoma

SMB2025 SMB2025 Follow
Share this

NathanSchofield

University of Oxford
"Mechanistic modelling of cluster formation in metastatic melanoma"
Melanoma is the most aggressive type of skin cancer, yet survival rates are excellent if it is diagnosed early. However, if metastasis occurs, five-year survival rates drop significantly. During the early stages of tumour initiation, melanoma cells form clusters within the primary tumour which promote metastasis. In the absence of biological tools to visualise cluster formation at primary tumour sites, we develop mathematical models to generate mechanistic insight into their formation. For this work we utilise in vitro data for two distinct melanoma cell phenotypes, one more proliferative and the other more invasive. This data consists of experiments for each phenotype individually, resulting in homogeneous clusters, as well as mixtures of the two phenotypes, resulting in heterogeneous clusters. We develop a series of differential-equation-based models using a coagulation-fragmentation-proliferation framework to describe the growth dynamics of homogeneous clusters, incorporating different functional forms for cell proliferation and cluster splitting. We then extend these models to describe the formation of heterogeneous cell clusters by considering both cluster size and phenotypic composition. We fit the models to experimental data, using a Bayesian framework to perform parameter inference and information criteria to perform model selection. In this way, we characterise and quantify differences in the clustering behaviour of two melanoma phenotypes in homogeneous and heterogeneous clusters, particularly the cluster coagulation, proliferation, and splitting rates. We find that the coagulation rate for the invasive phenotype is much larger than that for the proliferative phenotype, and evaluate how well different modelling assumptions fit the data in order to increase our understanding of the mechanisms driving metastasis. In future work, the models will be used to inform further experiments and, in particular, to suggest and test strategies for inhibiting metastasis.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.