ONCO-7

Spectral Spatial Analysis of Cancer Biopsies: Validation through in-silico data and extension to logistic growth models

SMB2025 SMB2025 Follow
Share this

VeronikaHofmann

Technical University of Munich
"Spectral Spatial Analysis of Cancer Biopsies: Validation through in-silico data and extension to logistic growth models"
MD Anderson's Enderling lab recently invented a spectral spatial analysis method for estimating tumor cell diffusivity and proliferation rate from single-point-in-time biopsies of breast cancer. In combination with clinical data from the patients these parameters could help identify a new biomarker for radiotherapy. In their first study, they investigate the relationship between the power spectral density (PSD) of the three-dimensional reaction-diffusion (RD) equation with exponential growth (as model of spreading cancer cells) and the two-point correlation function of the cell distribution in the biopsy (a spatial statistic). Their results make the approach seem promising, and this work aims to validate and extend their findings. Firstly, we develop a model to generate in-silico data to validate the parameter estimation method. This is done by solving the RD equation for different growth terms (exponential and logistic), adding Gaussian noise and 'translating' its continuous results into spatial point patterns which are interpreted as cell nuclei in the 'biopsy', and then applying the method to see if the original parameters can be retrieved. This model contains several features: dimensionality can be switched between 2D and 3D, cell size can be adjusted, cuts can be added to the point pattern, and in the 3D case, biopsy thickness is variable and the plane where the slice through the 'tumor' is made can be freely chosen. And secondly, the spectral analysis method is altered by proposing a numerical solution to the PSD of the RD equation with logistic growth (valid for arbitrary dimensions). Logistic growth is assumed to be the more realistic model, however, it is harder to handle as no analytical solution is available for the equation, and hence neither for the PSD. The validation results from the in-silico data are assessed and their meaning for the application to real patient data is discussed under consideration of the different types of cell growth.
Additional authors:



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.