CT01 - ECOP-03

ECOP-03 Contributed Talks

Tuesday, July 15 from 2:40pm - 3:40pm in Salon 6

SMB2025 SMB2025 Follow

Share this

The chair of this session is Alexander Browning.



Joseph Baafi

Memorial University of Newfoundland
"Effect of Climate Warming on Mosquito Population Dynamics in Newfoundland"
Mosquitoes are key vectors of several infectious diseases affecting humans and animals. In North America, Culex mosquitoes are primary vectors of West Nile virus, St. Louis encephalitis, and Japanese encephalitis, as well as viral diseases in birds and horses. The Culex mosquito life cycle consists of four stages: eggs, larvae, pupae, and adults, each with unique development and mortality rates. Only active (non-diapausing) adults can reproduce, and environmental factors such as temperature, photoperiod, and rainfall influence population dynamics and stage-specific abundances. We develop a data-driven, stage-structured model that incorporates experimental data to describe how key climate variables regulate life history parameters. Specifically, egg laying rates depend on temperature, while maturation and survival rates are influenced by both temperature and rainfall. Mortality is temperature-dependent, and diapause induction and reactivation rates in adults are driven by temperature and photoperiod. Unlike many previous models that focus on tropical mosquitoes, our study explicitly includes diapause, a dormancy period in adult Culex mosquitoes essential for accurate modelling of temperate mosquito populations. Our results show that mosquito populations peak during summer months when temperatures exceed 10°C. Seasonal fluctuations in abundance highlight the need for adaptive vector control strategies. Since control measures often target specific life stages, such as larvicides for larvae or insecticides for adults, our findings suggest that optimal intervention strategies should vary by season to effectively reduce mosquito populations and disease risk.



Alexander Browning

University of Melbourne
"Heterogeneity in temporally fluctuating environments"
Many biological systems regulate phenotypic heterogeneity as a fitness-maximising strategy in uncertain and dynamic environments. Analysis of such strategies is typically confined both to a discrete set of environmental conditions, and to a discrete (often binary) set of phenotypes specialised to each condition. In this talk, we extend on both fronts to encapsulate both a discrete and continuous spectrum of phenotypes arising in response to two broad classes of environmental fluctuations that drive changes in the phenotype-dependent growth rates. We present a series of analytical and semi-analytical results that reveal regimes in which both discrete and continuous phenotypic heterogeneity is evolutionary advantageous.



Jia Zhao

University of Alabama
"Experimental and theoretical investigations of rotating algae biofilm reactors (RABRs): Areal productivity, nutrient recovery, and energy efficiency"
Microalgae biofilms have been demonstrated to recover nutrients from wastewater and serve as biomass feedstock for bioproducts. However, there is a need to develop a platform to quantitatively describe microalgae biofilm production, which can provide guidance and insights for improving biomass areal productivity and nutrient uptake efficiency. In this talk, I will introduce a unified experimental and theoretical framework to investigate algae biofilm growth on a rotating algae biofilm reactor (RABR). Experimental laboratory setups are used to conduct controlled experiments on testing environmental and operational factors for RABRs. We propose a differential–integral equation‐based mathematical model for microalgae biofilm cultivation guided by laboratory experimental findings. The predictive mathematical model development is coordinated with laboratory experiments of biofilm areal productivity associated with ammonia and inorganic phosphorus uptake by RABRs. The unified experimental and theoretical tool is used to investigate the effects of RABR rotating velocity, duty cycle (DC), and light intensity on algae biofilm growth, areal productivity, nutrient uptake efficiency, and energy efficiency in wastewater treatment.



SMB2025
#SMB2025 Follow
Annual Meeting for the Society for Mathematical Biology, 2025.