Organizers:
Jinsu Kim (POSTECH), Eric Foxall (The University of British Columbia - Okanagan Campus), and Linh Huynh (Dartmouth College)
Description:
Mathematical biology has a long and rich history of physics-based models and methods. These include both explicitly physics-based models, such as mechanical models of cell wall geometry and molecular models of protein translation and folding, and those inspired by physics, such as interacting particle system models in ecology and epidemiology, to name just a few. In some cases, existing approaches are not optimal for the study of biochemical systems due to various issues including the curse of dimensionality, infinite state spaces, and uncertainty in model structure. Methods from probability theory, especially new methods developed specifically for the study of biological phenomena, can simplify and strengthen our analysis and understanding of these phenomena. In this minisymposium, which has two parts due to significant interest in the subject, we gather researchers from diverse backgrounds and fields of study to exchange ideas, models and methods. The intention is to foster communication and collaboration in the study of stochastic processes across all of biology, and especially to avail researchers of recent developments that could be fruitful in unexpected areas of application. Special requirement: Some of our speakers are only available on July 14th. Therefore, we kindly request that our minisymposium be scheduled on July 14th.
Hwai-Ray Tung
University of Utah"Extreme first passage times with fast immigration"
